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Abstract: Whilst radiotherapy (RT) is widely used for cancer treatment, radiodermatitis
caused by RT is one most common severe side effect affecting 95% cancer patients. Accurate
radiodermatitis assessment and classification is essential to adopt timely treatment, management
and monitoring, which all depend on reliable and objective tools for radiodermatitis grading. We
therefore, in this work, reported the development and grading performance validation of a low-
cost (∼2318.2 CNY) algorithms-based hyperspectral imaging (aHSI) system for radiodermatitis
assessment. The low-cost aHSI system was enabled through Monte Carlo (MC) simulations
conducted on multi-spectra acquired from a custom built low-cost multispectral imaging (MSI)
system, deriving algorithms-based hyper-spectra with spectral resolution of 1 nm. The MSI
system was based on sequentially illuminated narrow-band light-emitting diodes (LEDs) and a
CMOS camera. Erythema induced artificially on healthy volunteers was measured by the aHSI
system developed, with algorithms-based hyper-spectra and skin layer resolved physiological
parameters (i.e., the blood volume fraction (BVF) and the oxygen saturation of hemoglobin in
blood, et. al.) derivation using MC simulations. The MC simulations derived BVF and the
oxygen saturation of hemoglobin in blood showed significant (P< 0.001, analysis of variance:
ANOVA) increase with erythema. Further 1D-convolution neural network (CNN) implemented
on the algorithms-based hyper-spectra leads to an overall classification accuracy of 93.1%,
suggesting the great potential of low-cost aHSI system developed for radiodermatitis assessment.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In 2022, 4,820,000 and 2,370,000 new cancer cases, and 3,210,000 and 640,000 cancer deaths
were estimated to occur in China and the USA, respectively [1]. Killing cancer cells and/or
inhibiting their growth through high-energy radiation [2], radiotherapy (RT) is one most important
and widely adopted treatment. The established role RT plays is well recognized [2,3]. Yet, RT
unavoidably causes series of adverse reactions including radiation dermatitis: an RT-caused skin
inflammation that usually occurs when the RT-treated lesion is close to or penetrates the skin
[4]. Radiation dermatitis is reported to occur in ∼95% patients accepting RT, in the form of skin
redness, pain, erosion, ulcer and other serious symptoms [4–6]. Currently, radiation dermatitis
can be divided into three categories (i.e., erythema, dry desquamation, and moist desquamation),
among which erythema is the most common symptom at the earliest stage, accounting for 90%
of patients with radiation dermatitis [4,7]. If left unmonitored or untreated, radiation dermatitis
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may lead to RT treatment interruption, and negatively affect the patient’s posttreatment quality
of life [7]. Therefore, accurate assessment and classification of radiation dermatitis is highly
needed to ensure timely monitoring, and treatment (if found needed) thereof.

At present, the commonly used methods for the assessment and detection of radiation dermatitis
mainly include observation of clinical signs, patient self-reports, subjective assessment by doctors,
and measurement of biological and biophysical parameters of local skin [4,6]. However, these
methods are found with certain limitations. For instance, subjective assessment by doctors not
only increase their workload but may result in inter-doctor disagreement [6,8]. There is therefore
unmet clinical need to develop objective methods for accurate assessment and classification of
radiation dermatitis. Various methods and imaging modalities (i.e., OCT: optical coherence
tomography [9–11], confocal microscopy and digital dermoscopy [12–15], photoacoustic imaging
[16], and Raman spectroscopy [17], et. al.) have been developed. Among these, Photiou [9] et
al. reported OCT in combination with machine learning for the differentiation between normal
skin and early-stage radiation dermatitis. Based on confocal microscopy and digital dermoscopy
readings, Kišonas [12] et al. proposed an assessment scale to reflect the severity of radiation
dermatitis of 103 breast patients receiving RT. Exploring the biochemical changes associated
with radiation dermatitis, Hariri [16] et al. and Kanemura [17] et al. explored the suitability
of photoacoustic imaging and Raman spectroscopy, respectively, for erythema identification
with promising results. While the above-mentioned methods demonstrate great potential for
objective radiation dermatitis assessment, their field of view (FOV) is relatively limited at a few
millimeters, making it challenging for them to assess large-area radiation dermatitis.

Exploring both the morphology and biochemical information of the investigated samples at
large FOV, multispectral imaging (MSI) and hyperspectral imaging (HSI) are actively explored for
skin investigation. For instance, Bjorgan [18] et al. obtained hyperspectral images of human skin
covering the wavelength range of 400-1000 nm. Also, they proposed an algorithm based on an
inverse Monte Carlo model to decompose the hyperspectral data and extract biological parameter
information from the skin samples, demonstrating the suitability of HSI to derive physiology
relevant parameters from the skin. More recently, Abdlaty [8] et al. reported HSI imaging
study of induced erythema on three volunteers, showing that HSI imaging could accurately
differentiate different-graded erythema. Compared with HSI requiring relatively complicated
and cost hardware setups, simplified and more affordable MSI imaging based on sequentially
- illuminated narrow-band light-emitting diodes (LEDs) and CMOS camera have also been
investigated, in parallel, for skin investigation (Bernat [19] et al, and Bolton [20] et al.). In
particular, Monte Carlo (MC) simulations implemented on MSI spectra could not only derive
algorithms-based HSI spectra that closely resemble traditional HSI spectra, but also physiological
meaningful parameters (e.g., blood oxygen saturation and melanin content et.al.) from the
skin. Yet, previously reported work [20] only evaluated the suitability of algorithms-based
HSI derivation from MSI spectra on Caucasian volunteers. In addition, the MSI system cost
is to be further lowered, making it more affordable even for low-resource settings. Therefore,
in this paper, we reported the development and grading performance validation of a low-cost
(∼2318.2 CNY, which is three times lower than that by Bolton et al [20]) algorithms-based
hyperspectral imaging (aHSI) system for radiodermatitis assessment on more general populations.
The LED lighting arrangement for uniform - and the synchronization control based on STM32
for sequential-illumination were detailed. Theory and Python code for MC simulations enabling
algorithms-based hyper-spectra generation from multi-spectra were also described in detail.
Besides, analysis of variance (ANOVA) was implemented on the MC derived physiological
relevant parameters to reveal the associated parameters accompanying erythema, followed by
1D-convolution neural network (CNN) based classification of algorithms-based hyper-spectra
acquired from the normal skin and the skin with erythema, thereby validating the performance of
the system developed for radiodermatitis assessment.
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2. Experimental methods

2.1. MSI Hardware System based on Sequentially-illuminated LEDs and a Single
CMOS Camera

The schematic diagram of the low-cost MSI system developed is shown in Fig. 1(a). The system
mainly consists of an LED (BoYaKeJi, Shenzhen, China) array for illumination, a black-and-
white CMOS camera (HIKROBOT, Hangzhou, China) for imaging, STM32 microcontroller
(STM32F103, ST, Italy and French) and relays (BMZ-R1-E, SongChuan, Shanghai, China)
to realize sequential LED illumination, and a computer for multi-spectra image acquisition,
processing and display under sequential LED illumination. Eleven I/O ports of the STM32
microcontroller (Fig. 1(a)) were used in synergy with relays (Fig. 1(a)) to turn on/off the eleven
LEDs (Fig. 1) covering 420 - 660 nm sequentially, and the twelfth I/O port controls the CMOS
image capture at each wavelength. The center wavelengths and full width at half maximum
(FWHM) of all LEDs were determined using a commercial spectrometer (Aurora4000, CNI,
Changchun, China) and included in Table 1. Also included in Table 1 were the operating voltages
and the input electrical power as provide by the manufactures, and the output optical power
measured using an optical power meter (PM100D, Thorlabs, USA).

Fig. 1. (a) Schematic diagram of the multi-spectral imaging (MSI) system developed.
(b) LED arrangement illustration. (c) Picture of the real MSI system developed. (d) The
spatial resolution is 0.445 mm. The blue-color indicated LEDs in (b) illustrates typical LED
arrangement for uniform illumination.

Table 1. Specifications of the LEDs used

LED
Number

Central
wavelength (nm)

FWHM
(nm)

Operating
voltage (V)

Input electrical
power(W)

Output optical
power(µW)

1 428.514 18.99 3.3 3 74

2 441.989 20.06 3.3 3 134

3 471.745 28.26 3.3 3 83

4 505.012 30.52 3.3 3 76

5 530.783 31.80 3.3 3 120

6 544.957 43.10 3.3 3 14

7 571.161 48.17 3.3 3 17

8 591.034 15.31 2.5 3 6

9 598.672 15.74 2.5 3 7

10 619.989 16.04 2.5 3 29

11 666.628 18.79 3.3 3 156
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One notes that the beam angle of each LED is 60 degrees, covering a solid angle range of
π. Considering the 3D feature of the skin under investigation and uniform illumination needed,
4 LEDs covering 4 quadrants were adopted at each wavelength (Fig. 1(b)), resulting in a total
of 44 LEDs in the LED array. The real MSI system developed was pictured in Fig. 1(c). As
shown, the lens was adjusted to the optimal working distance of 30 cm, the diameter of resultant
FOV is 25 cm× 20 cm, making it feasible to acquire MSI spectra from wide skin area. Also, a
sample placement holder (Fig. 1(c)) was added to ensure consistent MSI spectra positioning.
The spatial resolution is 0.445 mm (Fig. 1(d)), determined by using a USAF 1951 resolution
target (RTS3AB-N, LBTEK, Shenzhen, China). The overall cost of the system is ∼2318.2 CNY
(Table 2), making it affordable for low-resource settings.

Table 2. Component list of the low-cost MSI system developed

Component Vendor Cost (CNY)

CMOS camera (X1) HIKROBOT, Hangzhou, China 650

Camera lens (X1) HIKROBOT, Hangzhou, China 508

LEDs (X11) BoYaKeJi, Shenzhen, China 193

Microcontroller (X1) STM32F103, ST, Italy and French 178

Relays (X4) BMZ-R1-E, SongChuan, Shanghai, China 427.2

3D printed mount (X1) HebeiZhizao, Shijiazhuang, China 362

Total: (-) 2318.2

The time diagram for sequential LED illumination and image capture at each wavelength is
shown in Fig. 2. Specifically, the frequency of the clock signal (CLK as in Fig. 2) from the
microcontroller was 1kHz. Before the onset of each MSI spectra acquisition, the microcontroller
was switched on for 3 seconds, then the I/O port controlling the first LED (LED1, Fig. 2) emits
a high-level TTL signal (time period of 19.5s, duty cycle of 7.7%. LED1 Trigger as in Fig. 2)
that was transferred to the relay (Fig. 1(a)), turning on the first LED for 1500 ms. Empirical
experimental results showed a total of 8 images captured during the LED ‘on’ period would
guarantee best signal to noise ratio (SNR), as will be validated below (in Sec. 2.2 and Sec. 3.1).
One notes that there was a time period of 150 ms both before and after the 8 images capture,
during which the CMOS exposure was rising edge triggered with exposure time set at 140 ms
followed by 10 ms for timely image transfer (Images Acquisition Trigger, Fig. 2), thereby avoiding
captured images cross-talk under different LED illuminations. Thereafter, the remaining 10
LEDs trigger signals (LED2 Trigger, . . . , LED11 Trigger, Fig. 2) were generated by the STM32
microcontroller with a time delay of 1500 ms. In the meanwhile, the image acquisition triggers for
synchronized CMOS image capture under the 10 LEDs illumination were sequentially generated
with the same specs as that LED1. A total of 19.5s was needed for MSI spectra acquisition. The
code sent to STM32 controller for controlling the time sequences was included as supplemental
materials (Code 1) [21].

To evaluate the thermal stability of the LEDs used (Table 1), the output LED spectra were
acquired within 1200 ms at three intervals corresponding to the image capture period (Fig. 2),
using the commercial spectrometer (Aurora4000, CNI, Changchun, China). One notes that
the spectrometer can be externally and rise-edge signal triggered. Therefore, within each
1200 ms of the image acquisition, a square wave signal (period of 400 ms and duty cycle of 50%,
Spectra Acquisition Trigger, Fig. 2) from the microcontroller was sent to the spectrometer for
synchronization. The light from LEDs collected by a fiber probe fixed on the sample placement
of the MSI system developed (Fig. 1 (c)). For each LED, a set of three spectra were finally
recorded and analysed to quantify the LED thermal stability.

https://doi.org/10.6084/m9.figshare.23641065
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Fig. 2. The time diagram for sequential LED illumination, CMOS camera image capture
and spectra capture at each wavelength.

2.2. Multi-spectra processing and MSI system performance validation

Before taking the sample MSI measurement under sequential LED illumination (Iλ,sample), the
dark frame image for sample(Idark,sample) and white standard board (Idark,whitestd ) were captured
ahead when all LEDs were switched off at the very beginning of the first 3000 ms (Images
Acquisition Trigger, Fig. 2) during each image capture cycle. After the MSI measurement
(Iλ,whitestd ) of a diffuse reflectance standard (WS-1, Ocean Insight, Orlando, Florida) under
sequential LED illumination, the multi-spectra (Rλ) could be derived as below:

Rλ =
Iλ,sample - Idark,sample

Iλ,whitestd - Idark,whitestd

(1)

To validate the performance of the MSI system developed (Fig. 1), we compared the measurements
of a standard 24-color chart (Datacolor Spyder, USA) using both a commercial spectrometer
(Aurora4000, CNI, Changchun, China) and the MSI system developed. The experimental setup
taking the standard diffuse reflectance spectrum of the color chart was shown in Fig. 3. Briefly,
a fiber probe with two SMA905 connector-terminated input ends and one common output end
is vertically fixed on a horizontal bracket. White light from a 3W white-light LED (BoYaKeJi,
Shenzhen, China) was sent to one SMA905 connector, incident onto- and back-scattered from
the color chart, and then detected by the spectrometer. The distance between the fiber probe tip
and the color chart was fixed at 2 mm. In order to acquire the DRS from the whole color chart,
the color chart was moved to measure diffusely reflected signal from each of its 24 color blocks.
After that, the DRS spectrum of the whole color chart was obtained through its division by the
reflected signal averaged overall the central 10 mm diameter region of the chart. Further, using
the color chart as example, we have set different number of images (i.e., 2, 4, 6, 8) captured to
derive the MSI spectra with highest SNR while considering the overall acquisition time. The
mean square error (MSE) between the MSI spectra and the spectrometer-measured DRS spectrum
was calculated, and that with lowest MSE was considered optimal.
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Fig. 3. Diffuse reflectance spectrum measurement of a standard color chart using a
commercial spectrometer.

2.3. Monte Carlo simulation based low-cost aHSI system development and skin layer
resolved physiological parameters derivation

The low-cost aHSI system was enabled through Monte Carlo (MC) simulations conducted on
multi-spectra acquired from the custom built low-cost MSI system (Fig. 1(c)). In parallel,
MC simulations allowed extraction of physiological meaningful parameters from the skin MSI
spectra measured. Specifically, we have built the MC Lookup table (MCLUT) to convert the
multi-spectra to algorithms-based hyper-spectra. Slight modifications were made to fit our
simulations on a six-layer skin model [20] from publicly available python code [22]. Specially,
the algorithms-based hyper-spectra were determined through feeding to our modified MC code
the layer-resolved absorption coefficient (µa), scattering coefficient (µs) and layer thickness
(Table 3).

Table 3. Name and thickness of each skin layer for
MCLUT built-up

Layer name Layer thickness (µm)

Epidermis 50

Basal layer 10

Papillary dermis 250

Dermal venous plexus 50

Reticular dermis 1× 104

Subcutaneous Tissue 5× 104

The layer-resolved µa and µs were determined as [20,23]:

µa(λ) = BVFSµa,oxy(λ)+BVF(1−S)µa,deoxy(λ)+Wµa,water(λ)+Mµa,melanosome(λ)+
∑︂

i
fiµa,i(λ)

(2)
where BVF is the blood volume fraction, S is the oxygen saturation of hemoglobin, W is the water
volume, M is the volume fraction of typical cutaneous melanosomes in the epidermis and basal
layer, fi and µa,i(λ) are the volume fraction and absorption coefficient of any additional absorber
in these tissue [20], respectively.

The value and variation for BVF, S, W, M of each skin tissue layer are included in Table 4,
showing that the three most prominent parameters suitable for Asian volunteers are: M of the
epidermis and basal layer; BVF and S of the dermal venous plexus. Furthermore, according
to Lambert-Beer Law [24], the absorption coefficients of oxy-hemoglobin [µa,oxy(λ)] and
deoxy-hemoglobin [µa,deoxy(λ)] in whole blood as involved in Eq.(2) could be derived as below:

µa,oxy(λ) =
2.303 × HbO2 × λ

64500
(3)
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µa,deoxy(λ) =
2.303 × Hb × λ

64500
(4)

where HbO2 is the molar extinction coefficient of oxy-hemoglobin, and Hb is the molar extinction
coefficient of hemoglobin, and their wavelength-dependent values are from Prahl [24].

Table 4. The parameter variation range of each skin layer as adopted in the MC simulation

Layer BVF S M W µ′s500nm f bMie g

Epidermis 0 0.75 0.009∼0.036 0.75 40 0 1 0.9

Basal layer 0 0.75 0.036∼0.144 0.75 40 0 1 0.9

Papillary dermis 0.0005 0.55 0 0.65 30 0.62 0.91 0.9

Dermal venous plexus 0.045∼0.18 0.63∼0.99 0 0.75 10 0.62 0.91 0.9

Reticular dermis 0.0005 0.55 0 0.65 30 0.62 0.91 0.9

Subcutaneous tissue 0.05 0.55 0 0.75 10 0.6 0.9 0.9

The absorption coefficient of water [µa,water(λ)] and melanosome [µa,melanosome(λ)] as involved
in Eq.(2) could be calculated by Eq. (5) [25] and (6) [26] below, respectively:

µa,water(λ) =
4πn′′

λ
(5)

µa,melanosome(λ) = 679.16
(︃
λ

500

)︃−3.33
(6)

where n′′ is the imaginary refractive index of water [25].
Moreover, the µs could be calculated by Eq. (7) and Eq. (8):

µs
′(λ) = µ′s500nm

[︄
f
(︃
λ

500

)︃−4
+ (1 − f )

(︃
λ

500

)︃−bMie
]︄

(7)

µs(λ) =
µs

′(λ)

1 − g
(8)

where the µs
′(λ) is the reduced scattering coefficient, the µ′s500nm is the reduced scattering at

500 nm, f is the fraction of Rayleigh scattering, (1 − f ) is the fraction of Mie scattering, bMie is
the scattering power of Mie scattering, and g is the anisotropy of scattering. Similarly, µ′s500nm, f
and bMie of each skin tissue layer variation are also included in Table 4.

In our study, the algorithms-based hyper-spectra cover the wavelength range of 420 nm to
660 nm, but could be easily extended to near-infrared wavelength range. The resolution of the
algorithms-based hyper-spectra was 1 nm as determined by the wavelength interval set for MC
simulation, corresponding to 240 pixels for the algorithms-based hyper-spectra as reported in
our work. While it took nearly a week to build the MCLUT as used in this work, the searching
time for a best fit algorithms-based hyper-spectra to the MSI spectra was less than 0.1s. The
MSE between the algorithms-based hyper-spectra and the multi-spectra measured was calculated,
and the algorithms-based hyper-spectra with minimum MSE were selected. Thereafter, the
corresponding physiological parameters set were also derived.

2.4. Erythema model and validation study design

To demonstrate the system’s capability for radiation erythema identification and grading, we
intentionally induced skin erythema on three Asian volunteers to simulate the radiation erythema
effects. The erythema was induced through ∼3 minutes striking of the palm using a plastic
ruler. There was no obvious degrading of erythema during the first five minutes, and almost
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Fig. 4. Schematic of 1D-CNN model developed used in this study (kernel size= 5, strid= 1,
padding= same) for algorithms-based hyper-spectra classification.

disappeared after 40 minutes, ensuring stable MSI spectra measurement from the erythema
induced. Following the steps below, the multi-spectra before and after erythema induction could
be derived within 5 minutes for each volunteer:

Step #1, a diffuse reflectance standard (WS-1, Ocean Insight, Orlando, Florida) was placed on
the sample placement holder (Fig. 1(c)), then the MSI system captured the dark frame image
of the diffuse reflectance standard whiteboard (Idark,whitestd ) and the images at each wavelength
(Iλ,whitestd ), followed by the whiteboard removal.

Step #2, the palm before erythema induction was placed on the sample placement holder
(Fig. 1(c)), a black marker pen defined the palm region of interest (ROI) sized 3 cm× 3 cm, and
the dark frame image of the palm(Idark,sample) and the images at each wavelength (Iλ,sample) of the
palm were captured.

Then the MSI spectra of the palm before erythema induction could be derived using Eq. (1).
Repeating the steps above, the MSI spectra of the skin after erythema induction could also be
derived.

Thereafter, the algorithms-based hyper-spectra and skin-layer resolved physiological parameters
associated with normal skin and erythema could be derived using the MCLUT built (Sec. 2.3).

2.5. Statistical analysis

To evaluate the performance of the low-cost aHSI system developed for skin erythema identifica-
tion, analysis of variance (ANOVA) were implemented on physiological parameters (BVF, S and
M as in Table 4) derived. 1D convolutional neural networks (1D-CNN) based binary classification
of algorithms-based hyper-spectra were also conducted. Figure 4 showed the 1D-CNN model we
built. In this model, the length of input and output layer is 240 and 2, respectively, corresponding
to the 240 wavelengths of the algorithms-based hyper-spectra, and the 2 categorical series
(normal and erythema). In total, 24000 (normal: 12000, erythema: 12000) algorithms-based
hyper-spectra were extracted from the three volunteers recruited, and the associated 24000 sets of
physiological parameters (BVF, S and M) were analysed. Each volunteer’s ROI region contains
more than 10000 pixels, and we randomly sampled 4000 pixels from each ROI region to obtain
the data. 80% of the algorithms-based hyper-spectra were used as the training set to train the
1D-CNN network structure, while the remaining 20% spectra served as the validation set to
validate the training results. We performed maximum normalization on all spectral data to
highlight spectral features, and used an NVIDIA GeForce RTX 3060 armed GeekPro computer
(Lenovo, Beijing, China) for both training and validation. The network of 1D-CNN in this study
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is a fully convolutional network, which the fully connected layer was converted into convolutional
layers (Convolution Layer4 and Convolution Layer5 shown in Fig. 4). An epoch number of 50
was found sufficient to ensure training and validation accuracies higher than 0.9. The loss is
calculated according to the function (tf.nn.sparse_softmax_cross_entropy_with_logits()) in the
tensorflow library. Moreover, we selected the Adaptive Moment Estimation (Adam) optimizer
(tf.train.AdamOptimizer()) to optimize the parameter optimization, which can learn adaptively
according to the loss value, and adjust the correction angle according to the size of the loss
when running the program. The optimized network structure was found to achieve a better
classification effect. 50 set of spectra were input for training at a time. The total training and
validation time was about 4.5 hours, and the time of classification for one set of spectral data
was about 4s. Based on the validation results, the receiver operating characteristic (ROC) curve,
sensitivity, specificity, and accuracy were also derived to validate the discriminative ability of the
aHSI system we developed for normal skin and radiation dermatitis evaluation.

3. Results and discussion

To evaluate the reliability of the aHSI system developed, we firstly assessed the thermal stability
of the LEDs (Sec. 3.1), and assessed the performance of the MSI system (Fig. 1(c)) based on
which algorithms-based hyper-spectra are derived (Sec. 3.2), followed by accuracy estimation
of algorithms-based hyper-spectra (Sec. 3.3). Thereafter, the algorithms-based hyper-spectra
differences associated with normal skin and skin erythema were analysed (Sec. 3.4).

3.1. Thermal stability analysis of the LEDs

Figure 5 showed the thermal stability analysis results of the 11 LEDs utilized (Table 1). The
recorded spectra overall demonstrated all 11 LEDs were stable during the MSI spectra acquisition.
Further coefficient of variation (CV) analysis of the LED central wavelength and their relevant
intensities lead to CVs within 0.09 and 0.54, confirming the thermal stability of all LEDs
(Table 1).

Fig. 5. The recorded LED spectra at 400 ms, 800 ms, and 1200 ms respectively. The spectra
at 800 ms and 1200 ms were shifted by 500 and 1000, for better illustration.

3.2. Performance validation of MSI system

Using the real picture of a real the 24-color chart (Datacolor Spyder, USA) as background, Fig. 6
showed the multi-spectra (pink discrete balls) and diffuse reflectance spectra (blue continuous
line, Fig. 6) taken and the MSE between them, respectively, using the MSI system developed and
a commercial spectrometer in the wavelength range of 420-660 nm. As shown, it was evident that
the spectral trends from both systems exhibited high consistency with MSE< 0.0058, thereby
validating the reliability of the MSI system we developed (Fig. 1).
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Fig. 6. Multi-spectra (pink discrete balls) and diffuse reflectance spectra (blue continuous
line) taken using the MSI system developed and a commercial spectrometer, with MSE
between them, both in the wavelength range of 420-660 nm.

Using the color chart as sample, we further investigated the MSE changes with different number
of images captured. Figure 7 showed the typical results for its bright yellow block (located at the
second row and the fourth column of the color chart, as in Fig. 6). When the captured image
number increased from 2 to 8, the MSE were reduced from 0.0055 to 0.0008. Similar MSE
change trends were noticed for other blocks of the color chart (data not shown). One notes that
further increase of the captured image number will lead to an even smaller MSE. Yet, the MSI
spectra acquisition time will be increased too. To balance a minimum MSE desired and fast MSI
spectra acquisition, the captured image number was set as 8.

Fig. 7. MSE between the multi-spectra and the diffuse reflectance spectra with different
number (2, 4, 6, 8) of images captured. A minimum MSE of 0.0008 was achieved when the
number was set as 8.

3.3. Accuracy estimation of algorithms-based hyper-spectra

Figure 8(a) depicted the ROI on the volunteers’ normal palm skin, and Fig. 8 (b) presented the
typical multi-spectra obtained from normal skin along with the corresponding algorithms-based
hyper-spectra, indicating good alignment between the two. Further quantitative analysis shows
that the MSE between the multi-spectra and algorithms-based hyper-spectra were 0.54%, 0.36%,
and 0.23%, respectively, for the spectra shown in Fig. 8, confirming the high accuracy of the
algorithms-based hyper-spectra. In addition, for the total 12000 multi-spectra and algorithms-
based hyper-spectra in the ROIs of the 3 volunteers, the mean ±1 standard deviation (SD) of MSE
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was 0.56%± 0.29%, reconfirming the accuracy of the algorithms-based hyper-spectra. Besides,
one notes that unlike multi-spectra lacking absorption peaks at 540 nm and 575 nm, the two
absorption peaks were evident in the algorithms-based hyper-spectra, showing the superiority
of the algorithms-based hyper-spectra for deriving physiological parameters associated with
hemoglobin. Similarly, the results of skin erythema were shown in Fig. 9. As consistent with
results of normal skin, the MSE between the multi-spectra and algorithms-based hyper-spectra
were 1.07%, 0.41%, and 0.34%, respectively, for the spectra shown in Fig. 9, whilst the mean ±1
standard deviation (SD) of the MSE calculated over all the algorithms-based hyper-spectra was
0.94%± 0.55%, affirming the high accuracy of the algorithms-based hyper-spectra.

Fig. 8. (a) Picture of normal palm skins of the three healthy volunteers from which MSI
images and multi-spectra were acquired. (b) Representative multi-spectra and algorithms-
based hyper-spectra derived. The * indicated area where multi-spectra were selected.

Fig. 9. (a) Picture of palm erythema of the three healthy volunteers from which MSI images
and multi-spectra were acquired. (b) Representative multi-spectra and algorithms-based
hyper-spectra derived. The * indicated area where multi-spectra were selected.
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3.4. Analysis of algorithms-based hyper-spectra differences associated with normal
skin and skin erythema

Fig.10a displayed the algorithms-based hyper-spectra of normal skin and skin erythema, and their
algorithms-based hyper-spectra difference were shown in Fig. 10(b). Overall, the algorithms-
based hyper - spectra of both the normal skin and skin erythema are dominated by absorption
bands at 540 nm and 575 nm that could be attributed to oxygenated hemoglobin absorption.
We have found the decreased algorithms-based hyper-spectra of hemoglobin band for the skin
erythema, signifying the increased hemoglobin content associated with skin erythema. The
increased hemoglobin content for skin erythema could be attributed to the increased supply
in skin erythema. The hemoglobin content observed and the differences spectra (Fig. 10(b))
indicates capability of the algorithms-based hyper - spectra for skin erythema detection.

Fig. 10. (a) Mean ±1 standard deviation (SD) of algorithms-based hyper-spectra association
with normal skin and skin erythema. (b) Algorithms-based hyper-spectra difference between
normal skin and skin erythema.

To specify the biochemical basis for the algorithms-based hyper-spectra difference observed, the
relative contribution of the volume fraction of typical cutaneous melanosomes (M) in the epidermis
and basal layer, together with the blood volume fraction (BVF) and the oxygen saturation(S)
of hemoglobin of dermal venous plexus, associated with normal skin and skin erythema were
plotted in Fig. 11. As shown, significant (P< 0.001, ANOVA) increased blood supply was found
for skin erythema, as consistent with algorithms-based hyper-spectra derived. Intriguingly, we
also noticed the relative contribution of melanosomes was higher with skin erythema, observation
that is consistent with previous studies [27,28] that reveal increased melanosome accompanying
erythema of colored volunteers using DRS. MC simulation based algorithms-based hyper-spectra
as we reported herein could not only reveal gross spectra differences between normal skin and
erythema (Fig. 10), but also elucidate physiological component changes thereof (Fig. 11), laying
the foundation of using algorithms-based hyper-spectra for radiodermatitis assessment.

Whist results in Fig. 10 and Fig. 11 demonstrated the capability of the aHSI developed for
skin erythema detection, we further quantified the classification accuracy using the algorithms-
based hyper-spectra based on 1D-CNN. Figure 12(a) showed the posterior probabilities of
algorithms-based hyper - spectra belonging to (i) normal skin (n= 2400), and (ii) skin erythema
(n= 2400), with sensitivity of 99.6% (2390/2400), specificity of 86.7% (2080/2400), and an
overall accuracy of 93.1% (4470/4800). The receiver operating characteristic (ROC) curve is
also generated (Fig. 12(b)), with the integration area under the ROC curve (AUC) of being
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Fig. 11. Bar diagrams ±1 SD showing the distribution of the cutaneous melanosomes
volume fraction (M) of epidermis (a) and basal layer (b), the blood volume fraction (BVF)
(c) and the oxygen saturation(S) of hemoglobin (d) dermal venous plexus.

0.99. The quantitative results in Fig. 12 confirm that low-cost aHSI system developed and the
algorithms-based hyper-spectra generated provide a best detection performance for skin erythema.

Fig. 12. (a) The posterior probabilities of algorithms-based hyper - spectra belonging
to (i) normal skin (n= 2400), and (ii) skin erythema (n= 2400) of the validation dataset
(20% of the total dataset), using 1D-CNN. (b) Receiver operating characteristic (ROC)
curves for separating skin erythema from normal skin for the validation dataset (20% of the
total dataset). The area under the ROC curve (AUC) was 0.99 using the algorithms-based
hyper-spectra.

4. Conclusion

We have detailed the development of a low-cost algorithms-based hyperspectral imaging (aHSI)
system that could be used for radiodermatitis assessment. The accuracy of the aHSI system have
been fully evaluated on three Asian volunteers, generating algorithms-based hyper-spectra that
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could reveal physiological parameter (i.e., haemoglobin) changes associated with skin erythema.
Capitalizing on the high-dimensional algorithms-based hyper-spectra, skin erythema could be
differentiated with high accuracy of 93.1%, demonstrating the potential of the aHSI to become
not only a non-invasive, rapid, and reliable but also an affordable diagnostic tool for quantitative
radiation dermatitis assessment.
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